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A resonant subharmonic interaction between two axisymmetric travelling waves 
was induced in the shear layer of an axisymmetric jet by controlled sinusoidal 
perturbations with two frequencies separated by one octave. Wherever the two 
excited waves are non-dispersive and the fundamental is close to its linear neutral 
point the two waves may interact in a manner that enhances the amplification 
rate of the subharmonic wave train. The amplified subharmonic will exceed the 
fundamental's level to become the dominant instability component. The initial phase 
difference between the subharmonic and the fundamental plays an important role 
in the amplification of the subharmonic. For specific phase angles between the two 
excited waves a suppression of the subharmonic may be observed. The influence 
of other initial parameters such as amplitude ratio, overall forcing level, excitation 
frequency and flow conditions at the nozzle (i.e. the initial turbulence level and the 
initial momentum thickness) was also investigated. An increase in the combined 
forcing level reduces the effect of the initial phase difference on the amplification of 
the subharmonic. Stronger excitation moves the location at which the two waves 
are locked in space further upstream while the effect of the initial phase difference 
decreases. The energy transfer to the subharmonic wave has been analysed by 
estimating the production terms. The results clearly indicate that most of the energy 
for the resonant growth of the subharmonic comes directly from the mean flow. The 
fundamental wave acts as a catalyst, as long as the resonance conditions are satisfied, 
enhancing the rate of energy transfer from the mean flow to the subharmonic. 

1. Introduction 
The instability of jets is a phenomenon which is not only relevant to the fundamental 

understanding of turbulence, but it is also a technologically important flow in which 
mixing and noise production occurs. The response of a jet to artificial excitation is 
of practical interest to turbulence control. Major contributions toward understanding 
and prediction of noise production were made by Michalke (e.g. 1971, 1972, 1977, 
1984, 1992). 

The development of the thin axisymmetric shear layer of a jet near the nozzle 
is dominated by a linear instability mechanism as first discussed by Kelvin and 
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Helmholtz for low Reynolds number flows. The travelling instability waves grow in 
the direction of streaming until they reach a finite amplitude and then they roll up 
into discrete vortices as predicted by Michalke (1965) and experimentally verified by 
Freymuth (1966). The thin axisymmetric shear layer close to the nozzle is unstable 
to a large number of modes (Plaschko 1979; Cohen & Wygnanski 1987a) while the 
fully developed jet at some distance from the end of the potential core is unstable 
only to the first helical mode, m = 1 (Batchelor & Gill 1962). Michalke (1971), Fuchs 
(1972) and Mattingly & Chang (1974) recognized the potential importance of the 
helical mode which should have been amplified in an axisymmetric jet at rates that 
are comparable to the amplification rates of the plane (m  = 0) mode of instability. A 
systematic study by Strange (1981) showed that the growth rates of the modes m = 0 
and rn = 1 are indeed comparable. 

Active control of the flow can be achieved by external excitation. Not only is the 
spreading rate of the jet influenced in this way, but also the mixing on the molecular 
scale and therefore the rate of chemical reaction is enhanced (Roberts 1984). The 
range of distances at which mixing is increased depends on the frequency and the 
amplitude of the excitation as well as on other parameters of the primary motion. 
The first comprehensive study of the response of an axisymmetric jet to a controlled 
axisymmetric ( m  = 0) excitation was done by Crow & Champagne (1971). They 
observed that an amplified instability wave also increases the rate of spread of the 
flow in the direction of streaming. Increasing the forcing amplitude beyond the level 
required to achieve saturation at some location downstream, while keeping all other 
flow parameters constant, does not enhance the growth of the fundamental instability 
wave beyond its nominal saturation level and therefore has no additional effect on 
the mixing process (see also Oster & Wygnanski 1982; Fiedler & Mensing 1985; 
Weisbrot & Wygnanski 1988). The degree of control is therefore limited as long as 
only one frequency is excited. 

Further enhancement of mixing can be achieved by a concomitant excitation of 
a second instability wave, e.g. its subharmonic. When the fundamental becomes 
neutrally stable, its subharmonic, which amplifies linearly at a very high rate (figure 
la) ,  enhances the mixing. Second-order interactions between a high-amplitude funda- 
mental wave and a low-amplitude subharmonic may lead to resonance (Kelly 1967), 
and result in an enhanced growth of the subharmonic above the predictions of the 
linear stability theory. The augmentation of the subharmonic wave contributes to an 
additional enhancement of the mixing. Thus, combined-mode forcing is not only rele- 
vant to the fundamental understanding of turbulence, but also to the technologically 
important problem of mixing and turbulence control. 

Michalke (1984) derived the conditions under which two axisymmetric disturbances 
(m = 0) can resonate in an axisymmetric shear layer. Cohen & Wygnanski (1987b) 
extended the analysis to allow azimuthal disturbances to interact. They found that 
for subharmonic resonance both waves must propagate with identical phase speeds 
and thus the high-amplitude fundamental must be close to its neutral point according 
to linear stability theory (figure la,b). Cohen & Wygnanski verified this condition 
experimentally by exciting a jet at a single frequency but at different azimuthal modes. 
Wherever the phase velocities of the excited fundamental and the naturally growing 
subharmonic were identical a band of frequencies centred around the subharmonic 
frequency was enhanced. Conversely, at locations at which the two waves were 
dispersive no significant response at the subharmonic frequency was found. Cohen 
& Wygnanski did not investigate the energy transfer to the subharmonic in detail. 
Monkewitz (1988) suggested that for the particular case of subharmonic resonance 
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FIGURE 1. Calculated growth rates (a)  and phase speed ( b )  of the axisymmetric component. 
Reprinted from Cohen & Wygnanski (1987b) 

the energy transfer is parametric and thus the amplitude of the fundamental remains 
unchanged and the energy for the subharmonic is supplied by the mean flow which 
is assumed to remain constant by virtue of the parallel flow assumption. 

In order to investigate laminar-turbulent transition, Miksad (1972, 1973) excited a 
shear layer with two frequencies of comparable growth rates. The two waves inter- 
acted nonlinearly, generating harmonics and subharmonics of the forcing frequencies. 
Ronneberger & Ackermann (1979) measured the sound radiation of a turbulent jet 
excited at two frequencies. However, they did not investigate the influence of the initial 
phase alignment on the amplification of the instability waves. Theoretical derivations 
of temporal instability in a shear layer (Patnaik, Sherman & Corcos 1976) and spatial 
instability (Monkewitz 1988) in a plane mixing layer showed that the wave-wave 
interaction is highly dependent on such phase alignment. The influence of the initial 
phase difference was observed experimentally by Arbey & Ffowcs Williams ( 1984). 
They found that the subharmonic is suppressed when the initial phase difference 
is 45". A dependence of the amplification of the subharmonic on the initial phase 
difference was also established by Bradly & Ng (1989), who observed a suppression 
of the subharmonic for an initial phase difference of 45". Raman & Rice (1989) found 
the suppression of the subharmonic for certain phase angles to be dependent on the 
Strouhal number of the forced waves. Hajj, Miksad & Powers (1993) investigated the 
influence of four initial phase differences on the subharmonic in a two-stream mixing 
layer forced at relatively low levels. They presented the evolution of phase-locked 
data taken at one cross-stream location and observed a suppression of the resonant 
subharmonic when the initial phase difference was 104". 

However, those studies examined only a few limited conditions in which mostly high 
forcing levels were used. In the experiment of Bradly & Ng the velocity perturbation 
on the centreline of the jet at the nozzle exit was 1.4% ; it was 2% in the experiment 
of Arbey & Ffowcs Williams. Raman & Rice forced the fundamental at levels varying 
between 3% and 7%. Since there are more parameters which influence the growth of 
the subharmonic and more ways in which resonance may be generated, one has to 
be careful in identifying the correct physical mechanism involved. 

The present paper describes a detailed investigation of the interaction between 
subharmonic and fundamental waves close to the nozzle of the jet. A large quantity of 
data was taken in both radial and streamwise directions to describe the development 
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FIGURE 2. The air jet facility. 

of the subharmonic wave. The forcing amplitudes were kept low: the maximum 
amplitude of the phase-locked fundamental in the centre of the shear layer was 3.2% 
at x/D = 0.25, while the amplitude on the jet centreline was less than 0.02%. The 
influence of the initial phase difference has been studied for a variety of forcing levels, 
and frequency pairs. Additional experiments were made when the turbulence in the 
developing shear layer was increased by a trip ring installed inside the nozzle. 

In his analysis Kelly implicitly fixed and decoupled the fundamental wave from 
the rest of the flow. This prompted us to investigate the energy transfer among the 
instability waves themselves and between the waves and the mean flow. 

2. Description of the experiments 
2.1. Jet facility 

A cross-section of the plenum chamber and the jet nozzle is shown in figure 2. The 
plenum chamber contains perforated plates, two air filters, a honeycomb straightener, 
and three screens to reduce the turbulence level of the flow upstream of the contrac- 
tion. The contraction ratio of the nozzle is 36:1, its exit diameter being D = 50.8 
mm. The nozzle contour is described by two tangent arcs and its exit is extended 
by a parallel section one diameter in length. The air flow of the jet was supplied by 
a blower with a Toshiba V F  Pack P1 speed controller which provided a stable air 
source. The exit velocity in the present experiment is ujet = 8 m/s, corresponding to 
a Reynolds number, based on the nozzle diameter, of ReD = 28000. At 8 m/s, the 
free-stream turbulence level is 0.097%. The jet emerges with a ‘top-hat’ velocity profile 
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surrounded by a thin shear layer. Both jet and measuring apparatus are enclosed in 
a large cage of 1/6 mm mesh screen to minimize the effect of room draughts. 

2.2. Experimental methods 
The facility was instrumented with a ring of eight normal hot wires equally spaced 
around the circumference at 45" apart and capable of measuring the streamwise 
component of velocity. The probe locations are expressed in cylindrical coordinates 
( r ,  9, x )  where r is the radial distance to the centreline, qn the polar angle, and x is 
the streamwise distance from the nozzle. The eight probe holders were mounted on 
separate micrometer screws and could be adjusted independently in both radial and 
axial directions. The traversing mechanism was then capable of moving all sensors 
simultaneously for equal distances in the radial direction. The radial motion was 
accomplished by a computer controlled stepper motor. The ring assembly could be 
translated in the axial direction along three posts aligned parallel to the jet centreline. 
The streamwise position of the probes was determined by an optical cathetometer. 

The hot wires were made of 5 pm tungsten wire with an aspect ratio of 300. 
The locally built anemometers were operated in the constant temperature mode at 
an overheat ratio of 1.8. All signals were low pass filtered at 10 kHz, amplified 
and converted in an analog-to-digital converter. A Masscomp 5500 PEP computer 
was used for data acquisition and primary data evaluation. It has 16 channels of 
analog-to-digital converters with a maximum aggregate sampling rate of 1 Mhz and 8 
channels of digital-to-analog converters with a maximum aggregate rate of 200 kHz. 
The system was able to generate simultaneously the forcing signal and a subharmonic 
reference signal to the digital-to-analog channels while collecting and processing the 
data. 

Controlled axisymmetric excitation (mode m = 0) of the jet was accomplished 
by a loudspeaker used as a compression driver and located at the bottom of the 
plenum chamber. The excitation signals were generated on the laboratory computer 
by superimposing two sine waves separated by one octave in frequency and variable 
relative phase. Certain axisymmetric disturbances are amplified in the plenum cham- 
ber at Helmholtz resonance condition. Since it was the purpose of this experiment 
to isolate the subharmonic resonance in the shear layer it was necessary to avoid 
plenum resonances which could mask the resonance effects investigated. Therefore 
the response of the apparatus to Helmholtz resonances was determined a priori and 
the critical frequencies were avoided in the experiment. In any case the upstream 
boundary conditions at the nozzle exit were determined. 

2.3. Processing of the data 
The hot wires were calibrated close to the exit plane of the jet against the velocity 
determined by the static pressure in the plenum chamber. A MKS Baratron pressure 
transducer was used for this purpose. A third-order polynomial was fitted to seven 
velocities ranging from 50 mm/s to 900 mm/s measured by each anemometer. The 
calibration procedure was automated and controlled by the laboratory computer. The 
conditioned signals from the eight hot-wire probes were passed through the analog- 
to-digital converters and converted to velocities using the calibration polynomials on 
a vector accelerator. Each buffer of data was then phase-averaged with respect to the 
reference signal and stored on disk. 

In the presence of coherent motion, any variable, like the streamwise velocity, may 
be decomposed into three parts (Hussain & Reynolds 1970): a steady mean flow, a 
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coherent component and a random fluctuation, viz. 
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ui(xj, t )  = U i ( x j )  + iii(xj, 7) + U ; ( X ~ ,  t ) ,  (2.1) 

where the phase-locked average (ui)  = gi + iii and the random component $ = 

The coherent data were then decomposed into complex Fourier coefficients, Fm,,(r), 
(ui - (ui)12. 

defined by 
T 

F,, = 1 [ 1 (u(ri, cp, z))eitm’P-mT1 dcpdz , 
271 T 

from which the magnitude and the phase 4 of the measured signal can be obtained. 
Thus, lFol(ri)l is the magnitude at the radial position r = ri of the mode m = 0 of the 
flow of the recorded u signal. Since only axisymmetric modes (m = 0) were considered 
in this study, the magnitude is (01. 

The traversing mechanism only allowed the use and calibration of single-wire probes 
in situ, therefore it was only possible to measure the streamwise velocity components. 
Since in the axisymmetrically forced case w m 0 and also it w 0 each component of 
the decomposed velocity independently satisfies the continuity equation 

av 1 a(r-7) an 1 a(rfi) - +-- = - +-- - 
a x  r ar ax r ar  - 0 ,  

from which the radial components could then be calculated. 

2.4. Summary of the experiments 

The main objective of this work was to determine the significance of the inflow 
parameters. Prompted by the experiments of Arbey & Ffowcs Williams (1984) and 
theoretical work by Monkewitz (1982, 1988), who had suggested that the initial phase 
difference between a fundamental wave and its subharmonic is important to the 
growth of the subharmonic, we set forth to verify this suggestion. All theoretical 
models assume that small disturbances are superimposed on a parallel mean flow. In 
a diverging mixing layer the phase speed is, however, not constant across the shear 
layer, i.e. the phase advances more rapidly on the high-speed side of the mixing 
layer than on the low-speed side. This might violate the resonance condition, which 
requires that the two interacting waves will be non-dispersive, and might influence 
the development of the subharmonic. It was therefore important to investigate the 
influence of the spreading rate of the mixing layer, the initial amplitude ratio of the 
forced waves and the overall forcing level on the resonant interaction. 

A compilation of the numerous experiments carried out with different frequencies 
and amplitude ratios y = Asub/Afu,, forcing levels and other information (e.g. the 
conditions at the nozzle) is presented in table 1. All experiments were done with an 
exit velocity of Ujel = 8 m/s. Because the initial phase difference is an important 
parameter which influences the development of the subharmonic wave, all bimodal 
forcing cases were carried out at least two or more different initial phase differences. 
Note that the term ‘high forcing level’ is used when the maximum phase-locked 
fluctuation of the fundamental wave reached 3.2% of the mean velocity in the centre 
of the shear layer at x / D  = 0.25 corresponding approximately to 0.02% in the centre 
of the jet column and is therefore near the limit of the resolution of the measurement. 
We refer to it as ‘high-amplitude forcing’, being twice the amplitude of most other 
cases. 
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No. 

I 
I1 

I l l  
I V  
V 

VI  

V l  I 

V l I l  

I X  

X 

X I  

X I  I 

XI11 

X I  v 

xv 

Case 

184 Hz, forcing level as in 111 
368 Hz, forcing level as in 111 

184 & 368 Hz, y = 1.6 
184 & 368 Hz. y = 0.4 
184 & 368 Hz, y = 0.1 

high forcing 
184 & 368 Hz, y = 0.1 

data along centreline 

184 & 368 Hz, y = 0.1 

data along centreline 

62 & 124 Hz, y = 0.1 

data along centreline 

31 & 62 Hz, y = 0.1 

trip ring, low forcing 
184 & 368 Hz, y = 1.6 

trip ring 
184 Hz, forcing level as in X I  I I 

trip ring 
368 Hz, forcing level as in X I I I  

trip ring 
184 & 368 Hz, y = 1.6 

140 & 280 Hz, y = 1.6 

150 & 300 Hz, y = 1.6 

1.2 0.3% 
2.3 1.6% 

2.3 1.6% 
2.3 1.6% 
2.3 1.6% 

2.3 3.2% 

0.8 (81 I = 1.7% 
ujet x/D=O.Z,r=O 

1.1 lo-' 
2.1 x 10-6 

2.1 x 10-6 
2.1 x 10-6 
2.1 x 10-6 

13.2 x 

2.3 1.3% 2.0 x 10-6 

1.2 0.7% 

2.3 6.1 Yo 

2.3 6.5% 

1.8 1.1% 

1.9 1.1% 

TABLE 1. Compilation of the experiments. 

5.7 x lo-' 

7.4 x 10-6 

46. x 10@ 

2.1 x 10-6 

2.1 x 10-6 

3. Subharmonic resonance 
3.1. Resonance conditions for the axisymmetric jet 

Under the assumption of parallel flow Cohen & Wygnanski (19873) examined the 
conditions for resonance interactions between two instability waves. Following Kelly 
(1967), they found that if qOut represents a secular, growing wave produced by the 
interaction between the waves q1 and q2, the eigenvalues associated with qout must 
satisfy one of the following interaction conditions? 

aout = a 1  + a 2 ;  oOut = 0 1  + 0 2 ;  mout = ml + m2, 
aout = a1 - a,; wout = 01 - 0 2 ;  mout = ml - m2, 

(3.1) 
( 3 4  

* 

t These conditions are often referred to as resonance conditions in the literature (Kelly 1967; 
Cohen & Wygnanski 1987b). The word resonance is used only for convenience; it does not 
necessarily imply an increase in growth rate. It would indeed be more accurate to call them 
interaction conditions. 
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where c1 is the wavenumber. The interaction between two waves of the same frequency 
but opposite mode numbers may lead to a distortion of the mean flow (e.g. Long & 
Petersen 1992; Paschereit et al. 1992). 

For axisymmetric disturbances the output mode number mout = mjun - msub = 0 is 
also axisymmetric and the resonance conditions reduce to 

Cph,fun = Cph,sub 

and 
(3.3) 

where the subscripts fun  and sub represent the fundamental and the subharmonic wave 
respectively and Cph is the phase velocity of the wave defined by Cph = w/ctr. These 
conditions suggest that for a subharmonic to be in resonance with its fundamental, 
both waves must propagate with the same phase speed and the fundamental must 
be close to its neutral point to satisfy equation (3.4). First experimental verification 
was obtained by forcing the jet with a single (fundamental) frequency o f f  = 368 
Hz (case If). Downstream of x/D > 0.56, at Ste,fun w 0.3, the resonance conditions 
(3.3) and (3.4) were met (figure l a  and figure lb) ;  consequently for a narrow band 
of frequencies around the subharmonic frequency (f = 184 Hz) an increase of energy 
was observed (figure 3a). Conversely, forcing at a frequency o f f  = 184 Hz (case I) 
did not produce any significant wave at the corresponding subharmonic frequency of 
f = 92 Hz (figure 3b): For Sto,jun = 0.15 the resonance conditions are not satisfied 
and no resonant interaction could be expected. 

3.2. Radial projles of the phase-averaged modulus 
Radial profiles of the modulus of the decomposed phase-averaged velocities normal- 
ized by the exit jet velocity, liil/Ujet, are plotted in figure 4 for two downstream 
positions x / D  = 0.3 and x / D  = 0.8. The radial distance was normalized by the local 
momentum thickness and the origin of the coordinate system was shifted to the centre 
of the shear layer by defining the radius of the jet column b . 5  as the radial distance 
at which the local mean velocity is one-half of its value on the centreline g , ~ .  Thus: 

where the momentum thickness is defined as 

In this study the centreline velocity was equal the jet exit velocity njet since all 
measurements were done in the region of the potential core ( x / D  < 3). Following 
- Long & Peterson (1992) the above integral was truncated at the radial position where 
U(  r )  = 0. lgjet because the hot-wire calibrations were inaccurate below this level. 
This truncation was used for all transverse integrations. 

Let us consider now three specific cases of forcing: ( i )  forcing of the subharmonic 
f s u b  = 184 Hz only (case I), ( i i )  forcing of the fundamental ffun = 368 Hz only 
(case If) and ( i i i )  both waves forced simultaneously with an initial amplitude ratio of 
y = Asub/AfUn = 1.6 and an initial phase difference of A~!J = 0". 

At x / D  = 0.3 the Strouhal numbers of the subharmonic and the fundamental 
based on the momentum thickness are Sto,sub = 0.08 and Sto,fun = 0.16 respectively. 
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FIGURE 3. Power spectra at x / D  = 0.8, U / U j e t  = 0.5 for the jet forced with (a) 368 Hz (case I I ) ,  
(b) 184 Hz (case I )  and (c) 184 and 368 Hz (case ZZI). 
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There, both frequencies are amplified linearly (figure 4a-c). The growth rate of the 
fundamental, being higher than the growth rate of the subharmonic (figure l), leads 
to the higher amplitude of the fundamental wave for all three forcing cases. The 
resonance conditions (3.3) and (3.4) are not satisfied and therefore the subharmonic 
amplitudes (figures 4a and 4c) are not affected by the presence or absence of the 
fundamental (generated at f = 368 Hz). 

At x / D  = 0.53 the Strouhal numbers of the subharmonic and the fundamental 
are Sto,sub = 0.15 and Stg,fun = 0.3 respectively and thus both resonance conditions 
are met. The radial amplitude distribution of the instability waves measured at 
x / D  = 0.8 is shown in figure 4(d-f)  (note also the different scale of the ordinate in 
figure 4d-f relative to 4a-c). The subharmonic amplitude was enhanced by a factor 
of 2.5 when the jet was forced simultaneously at both frequencies f = 184 and 368 
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FIGURE 4. Radial profiles of the phase-averaged modulus of the different modes at two downstream 
locations. The jet was forced at 184 Hz (case I )  (a ,d) ,  368 Hz (case 11) (b ,e)  and simultaneously at 
184 Hz and 368 Hz (case 111) (c,f). The insert in ( e )  compares the radial profiles of the fundamental 
forced alone (case IZ) (dotted line) and the fundamental generated by bimodal forcing (case IZI) 
(solid line) at identical Strouhal numbers. 

Hz rather than at a single frequency f = 184 Hz of identical amplitude. Bimodal 
forcing enhanced the development of the Sffun = 552 Hz mode also (figures 3 and 
4f). This is consistent with the sum interaction condition (equation (3.1)),  which leads 
to the amplification of the frequency (fsub + ffun) = +ffun.  Single-frequency forcing 
of the fundamental wave leads to the development of a subharmonic (figure 4e)  of, 
however, small amplitude. Forcing at the fundamental frequency o f f  = 368 Hz only, 
results in an amplification of a broader band of frequencies around the subharmonic 
(see the plots of the power spectrum, figure 3a)  whereas forcing at both frequencies 
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(f = 184 and 368 Hz) focusses on the amplification making the spectral peak of 
the subharmonic (see figure 3c) much clearer defined. Bimodal forcing increases the 
momentum thickness 80,~ more strongly than forcing at the fundamental alone and 
in turn the disturbance Strouhal number Ste increases at the same x /D .  Because 
of the different Ste  values the radial amplitude distributions of the jet forced at the 
fundamental frequency alone (figure 4e) and at both frequencies (fundamental and 
subharmonic) look different (figure 4 f )  because they correspond to different locations 
on the stability diagram and are therefore represented by different eigenfunctions. 
When the two modes are compared at the same Strouhal number the shapes of the 
amplitude distributions are similar (see the insert in figure 4e showing these shapes). 
The dotted line corresponds to the fundamental at conditions described in figure 
4(e) and the solid line represents the fundamental generated by bimodal forcing at 
conditions corresponding to figure 4 ( f )  but at a streamwise location corresponding 
to x / D  = 0.75 where Ste for both forcing stations is the same. 

3.3. Streamwise evolution of the instability modes 
The streamwise evolution of the instability modes helps us to understand the effects of 
the resonance. The following three criteria which are commonly used in the literature 
(Cohen & Wygnanski 1987a; Petersen 1978; Gaster, Kit & Wygnanski 1985)  serve 
as measures of the energy (or amplitude) of a given wave at a given streamwise 
cross-section (figure 5 )  : 

They display qualitatively the same trend but their maxima occur at different stream- 
wise locations. The maximum amplitude of the subharmonic is at x / D  = 0.78 (figure 
5a) while the maximum for the integrated amplitudes occurs at x / D  x. 0.9 (figure 5b) 
and the maximum energy occurs somewhat earlier at x / D  = 0.84 (figure 5c). The 
subharmonic ceases to amplify by the linear instability mechanism at x / D  = 0.84, 
which is also evident from the shape of the radial amplitude distribution plotted in 
figure 5(c). Since the neutral point coincides with the maximum energy level attained, 
the energy criterion is preferred in displaying the evolution of the instability. The 
streamwise location of the maxima of the subharmonic obtained by the two other 
criteria given in equations ( 3 . 7 ~ )  and (3.7b) is thus either upstream or downstream 
of the linearly neutral amplification point, respectively. This is also evident from 
the shape of the radial amplitude distribution (figures 5a and 5b) which does not 
correspond to the shape of the neutrally stable amplitude distribution in these two 
instances. The reason for the maxima calculated by the three criteria occurring at 
different x-locations is due to the change in the radial shape of the amplitude dis- 
tribution. Thus the description using maximum amplitude (equation ( 3 . 7 ~ ) )  may be 
misleading because it does not take the spreading of the shear layer into account. The 
maximum amplitude may decrease even though the energy contained in the specific 
mode when integrated over the shear layer actually increases. Furthermore, since the 
shape of the radial amplitude profile changes with distance from the nozzle a second 
peak might develop (as shown in figure 4e) which exceeds the original peak used to 
characterize the amplitude in the centre of the shear layer. The fundamental wave is 
neutrally stable at x / D  = 0.53. The corresponding ‘neutral’ amplitude distribution of 
the fundamental is displayed in figure 5(c). 

All three ‘measures’ show a rapid increase of the subharmonic wave due to the res- 
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onant interaction when prompted by the simultaneous forcing at the two frequencies. 
The increases in the :ffun mode and the first harmonic 2ffun with x are substantial, 
when their evolution is based on considerations of their maximum amplitudes (figure 
5a). However, the integrated energy contained in these modes is negligible when 
compared to the energy levels of the subharmonic and the fundamental wave trains 
(figure 5a and figure 5c). The maximum amplitudes of the :ffun mode keep increasing 
up to x / D  = 0.7, while the first harmonic 2ffun increases up to x / D  = 0.54. According 
to the linear model, the amplification of both waves (2ffun and iffun) should have 
ceased closer to the nozzle. The shear layer becomes neutrally stable to the : f fun 
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7 = 0.1, A 4  = 0" 0.18 0.0132 
7 = 0.1, A 4  = 90" 0.12 0.0374 

M90° /MOO 67% 28% 

y = 0.4, A 4  = 0" 0.216 0.0154 
y = 0.4, A 4  = 90" 0.154 0.0066 

Mwo /Moo 71% 43 yo 

y = 1.6, A 4  = 0" 0.22 0.0172 
y = 1.6, A 4  = 90" 0.155 0.0117 

M900 /Moo 70% 68% 

0.00146 
0.00012 

8 Yo 

0.00148 
0.00036 

24% 

0.00160 
0.00080 

50% 

TABLE 2. Differences between the maximum level reached for the subharmonic in the amplified 
case and in the suppressed case for various initial amplitude ratios and various measures. 

mode at x / D  = 0.45 and to the harmonic frequency at x / D  = 0.25. Both waves 
are thus amplified nonlinearly, the harmonic frequency is a consequence of the finite 
amplitude of the fundamental wave while the $ffun is tied to the interaction of the 
fundamental and the subharmonic wave. 

The resonance conditions (3.3) and (3.4) are met because the fundamental is 
neutrally stable at x / D  = 0.53 (figure 5c) and equal phase speeds are attained since 
the phase difference (2&b - +fun) remains constant. This phase difference, taken at 
17 = -5, is plotted as a solid curve in figure (5c). It is clearly a constant between 
0.4 < x / D  < 0.8. 

4. The influence of initial parameters 
4.1. The initial amplitude ratio 

Forcing the jet at two frequencies simultaneously permitted us to assess the signif- 
icance of the initial phase difference (A+), the absolute amplitudes, and the relative 
amplitude ratio (y = Asub/Afun) between the two input waves on the growth of the 
subharmonic. The results obtained for an initial amplitude ratio of y = 0.4 (case I V )  
and for four different phase differences, A+, are shown in figure 6. The subharmonic 
frequency (figure 6a)  is amplifying very rapidly beyond x / D  = 0.52 for all initial phase 
angles but one at A+ = 90". This amplification is sustained until J liil2r dr/D2/v;e, 
attains its saturation level which is approximately 0.0015. When the criterion of 
maximum amplitude (equation (3.7a)) is used one can observe that not only was the 
initial amplification at A+ = - 90" lower than at the other A+ but in this case the 
maximum level of Iiilmax,sub/Ujer attained was only 0.05 (at x / D  = 0.62) before the 
amplitude of the subharmonic got suppressed. This characteristic is less pronounced 
when the energy criterion (equation ( 3 . 7 ~ ) )  is used. This suppression persists until 
x / D  = 0.68 whereupon a rapid amplification is realized. Neither the fundamental 
wave (figure 6 b )  nor its harmonic component (figure 6c)  are strongly affected by A+. 
The fundamental wave saturates initially at ~ i i ~ m a x / ~ j e t  = 0.09 which corresponds to 
0.42 < x / D  < 0.5 where Sto = 0.3 and where the fundamental wave is no longer 
amplified linearly. Nevertheless the amplitude and the energy keep increasing up to 
x / D  = 0.68 presumably due to the exchange of energy with the subharmonic wave. It 
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is worth noting that the amplitude and the energy of the fundamental are independent 
of the amplitude of the subharmonic. The amplitude and energy of the fundamental 
are of the same order of magnitude as the subharmonic (figures 6a and 6b)  but an 
order of magnitude larger than the harmonic (figure 6c). 

In order to determine whether the streamwise suppression of the subharmonic 
wave depends on the imposed amplitude ratio between the two forced waves (the 
subharmonic and the fundamental), the experiment was repeated at two additional 
amplitude ratios of y = 0.1 (case V )  and y = 1.6 (case I l l )  at various initial phase 
angles. The overall forcing level was maintained at a constant value in spite of the 
different amplitude ratios. The variation of the integrated energy (equation (3.7~)) with 
x / D  is displayed in figure 7 for y = 0.1 and five different initial phase angles. Once 
again the lowest amplitude was observed for an initial phase difference of A 4  = 90". 
The very low forcing level of the subharmonic frequency at y = 0.1 is responsible for 
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the large scatter in the subharmonic data due to a less pronounced coherent motion. 
Only two values of A$, 0" and 90", were considered for y = 1.6 (figure 8) as we 
expected the amplitude of the subharmonic to be smallest for A$ = 90" which was 
indeed found to be the case. 

The amplitudes of the fundamental and the harmonic waves were insensitive to the 
changes in A$, irrespective of y .  Since the momentum thickness i3 was not affected by 
A$ and y until the resonant amplification of the subharmonic was well established it 
is possible to compare the response of the subharmonic to y for two different initial 
phase angles directly, one leading to the most suppressed subharmonic (A$ = 90") and 
the other one to the most amplified subharmonic (A$ = 0"). The results for the three 
amplitude ratios y = 0.1, 0.4, and 1.6 at A$ = 0" and 90" are summarized in table 2 
using the three different criteria of amplification described in 33.3. Table 2 displays 
the importance of choice of criterion used to describe the evolution of an instability 
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wave. It compares the maxima measured at each streamwise location for the case 
of the suppressed subharmonic (A4  = 90") and for the most amplified subharmonic 
(A$ = 0"). The degree of suppression of the maximum amplitude (equation ( 3 . 7 ~ ) )  
of the subharmonic at A 4  = 90" relative to A$ = 0" was independent of the initial 
amplitude ratio. For example, for an initial y = 0.1 the maximum amplitude of the 
suppressed case (A$ = 90") was 67% of the maximum amplitude in the most amplified 
case (A$ = o"), displayed in table 2 by the quantity M90./Moo, where M stands for the 
different measures (equations (3.7~-c)). Both maxima occur at x / D  = 0.8. The ratio, 
M9oo/M@, changed by merely 3% when the imposed y was increased by a factor of 
16 (i.e. to y = 1.6) while a constant overall forcing level was maintained. The integral 
measures (columns 3 and 4 in table 2) are considerably more sensitive to y. They 
indicate that the degree of suppression of the subharmonic decreases with increasing 



Experimental investigation of subharmonic resonance in an axisymmetric jet 38 1 

y .  The absolute percentages are not important since the azimuthal resolution of A 4  
was only by A$ = 90". 

4.2. The overall forcing level 
All theoretical models discussed above assume parallel flow and small amplitudes. 
Raising the total forcing level might violate these assumptions as it leads to nonlinear 
interactions and to an increase in the spreading rate of the mean flow field. The effect 
of doubling the amplitude of the combined wave while maintaining y = 0.1 (case V I )  
on the integrated energy across the flow is shown in figure 9. Doubling the combined 
forcing level eliminated the effect of the initial phase difference between A$ = 0" 
and A 4  = 90", irrespective of the criterion by which it was assessed (i.e. maximum 
amplitude or integrated energy). It is possible that the effect of A 4  is found for values 
in the range 90" < A 4  < 360". 

Additional measurements were made along the centreline of the jet column at 
higher forcing levels and three different pairs of frequencies: ( i )  184/368 Hz (case 
V I I ) ,  ( i i)  62/124 Hz (case V I I I )  and (iii) 31/62 Hz (case I X ) .  The lower frequencies 
produced a longer fetch in which interaction could be studied. For all three cases 
y = 0.1 while the initial phase-locked forcing level of the fundamental (measured on 
the centerline at x / D  = 0.2) changed to (fififun(/Ujet = 0.5% for case (i), 1.7% for case 
(ii) and 2.7% for case (iii). The downstream evolution of the phase-locked amplitudes 
of the subharmonic along the centreline for case ( i )  is plotted in figure 10a for two 
different A$. The solid line represents the amplitude of the subharmonic for an 
initial A 4  = 0", and the dashed line shows the same for A$ = 90". The maximum 
amplitude attained with A$ = 0" is now 93% of the maximum amplitude attained 
with A+ = 90" and it occurs approximately 1.80 further downstream. Forcing the 
jet at 62 and 124 Hz results in the same ratio of the maximum amplitudes (figure 
lob). No resonant amplification was observed for the pair of 31 and 62 Hz, regardless 
of the initial phase difference. In this case the two waves do not travel with the 
same phase speed in the region where the mode m = 0 is amplified linearly. They 
have, therefore, no opportunity for a resonant interaction. At large x / D ,  where 
the two waves become non-dispersive, only the helical mode m = 1 is still linearly 
amplified. Thus resonance cannot take place. Forcing at high amplitudes renders the 
amplification of the subharmonic independent of the initial phase difference. 

4.3. The spreading rate of the forced mixing layer 
The spatial stability analysis of an axisymmetric jet suggests that pure suppression of 
the subharmonic wave is only feasible in parallel flow (Monkewitz 1988). Since the 
spreading rate of a shear layer forced at high amplitudes is increased, the parallel flow 
assumption might be invalid. This may inhibit the suppression of the subharmonic 
wave for some initial phase angles as was indeed observed for case V I .  To address 
this question a trip ring was installed inside the nozzle, 25.4 mm upstream from the 
exit, in order to bring the transition closer to the nozzle exit. Axial notches were cut in 
the ring to forestall organized vortex shedding on its leeward side. The ring is about 
3.6 mm wide and about 0.5 mm thick, which is approximately equal to the thickness 
of the laminar boundary layer in the nozzle for the velocity range investigated. 

The streamwise evolution of the momentum thicknesses and the turbulence inten- 
sities for the unexcited flow with and without the trip ring are compared in figure 11. 
The turbulence intensities, plotted on an arbitrary scale, are initially increased many 
fold due to the trip ring but the difference vanishes with x and at x / D  m 0.84 the 
intensities become roughly equal for both cases. Although the momentum thickness 
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was increased by approximately 25% between 0.5 < x / D  < 0.75 (the region in which 
a resonant interaction was deemed to occur) as a consequence of the upstream move- 
ment of the transition location from x / D  = 0.5 to x / D  = 0.3, the rate of spread of 
the turbulent shear layer was not altered (figure 11). Resonant interaction occurred at 
x / D  > 0.5 independently of the trip ring, and the rate of growth of the subharmonic 
was strongly coupled with the initial phase difference (figure 12). In this case the 
resonance was suppressed at an initial phase difference of A 4  = 0" in contrast to 
case III where suppression occurred at A 4  = 90". The trip ring shifted the resonant 
interaction by a quarter wavelength, 1/4, upstream because it increased the local 
width of the basic flow by approximately 25% in the region where the interaction 
occurred. It appears (figure 11) that the enhanced background turbulence has only 
a marginal effect on the resonant interaction and the generation of the subharmonic 
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FIGURE 10. The variation of the amplitudes of the subharmonic along the centreline with x / D  for 
a higher forcing level and two different initial phase angles: (a)  frun = 368 Hz, fsub = 184 Hz, 
JDJo,fun = 0.5% (case VZZ); (21) ffun = 124 Hz, fsub = 62 Hz, J~~Jo,,~,, = 1.7% (case VZIZ). 
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FIGURE 11. The evolution of the momentum thickness and the maximum turbulence intensity 
along x / D  with and without a trip ring. 

wave. The observed shift is essentially related to the shift in the virtual origin caused 
by the trip ring. It is also clear that a strong amplification of the subharmonic wave 
is coupled with an increase in thickness of the shear layer. External excitation (case 
X I I I )  of the tripped flow increased the momentum thickness at x / D  = 0.5 by almost 
50% and comparable excitation in the absence of tripping (case III) resulted in a 
similar relative increase in 8 at this streamwise location. The local disparity in width 
between the two basic states (tripped and non-tripped) was retained in spite of the 
excitation at y = 1.6 although the absolute initial-perturbation levels were notably 
different ( / i i ( m a x / ~ , e t I x , ~ = 0 . 2 5  = 1.6% for case I I I  while it is 6.5% for case X I I I  - see 
table 1). 

The high forcing level of 3.2% (case V I ) ,  whose 8 value is also plotted in figure 11, 
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nozzle and four different initial phase angles (case XIZZ).  

produced a local momentum thickness which is between that of the highly amplified 
results of cases ZIZ and XZZZ from x / D  = 0.3 onwards. Since there is an initial phase 
shift of approximately 90" for the two subharmonic interactions occurring in cases 
IZZ and XZZZ, the intermediate 0 associated with case VZ, which was excited at the 
same frequencies as cases ZZZ and XZZZ, may necessitate a 30" - 45" phase shift to 
suppress the growth of the subharmonic. Since data at this A 4  were not measured 
the association of the lack of suppression with the high amplitude of forcing remains 
uncertain. It may be surmised that the initial A 4  required for suppression of the 
subharmonic depends on the initial thickness at which resonant interaction is to 
occur. 

4.4. The forcing frequency 

The streamwise location of the interaction between the subharmonic and fundamental 
depends on the local Strouhal number Ste = oO/uj,, and thus for a given Reynolds 
number ReD = Dui,,/v and jet velocity it depends on the forcing frequency. For a 
lower Strouhal number the two waves will have the same phase speed and maximum 
growth rate further downstream provided O(x) will not be significantly altered (see 
figures l a  and lb). Data were taken at various streamwise locations up to 2 nozzle 
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FIGURE 13. The variation of the energy with x / D  for a frequency pair of fsub = 140 Hz and 
frun = 280 Hz (case X I  V )  for two different initial phase angles. 

diameters for two additional frequency pairs. The influence of two initial phase angles 
(A$ = 0" and A$ = 90") was investigated. The initial amplitude ratio was y = 1.6. 

The results for a frequency pair of fsub = 140 Hz and ffun = 280 Hz (case X Z V )  
are displayed in figure 13. Here the subharmonic was only slightly amplified for an 
initial phase difference of A$ = 90". It reached its maximum energy for the first time 
at x / D  = 1.0 and later at x / D  = 1.6. At both locations, however, the integrated 
energy of the subharmonic was only 30% of the fundamental rather than being 3 
times larger than the fundamental as, for example, for case V .  It should be noted 
that the amplitude of the fundamental in those two cases (XI V and V )  was not much 
different. For an initial phase difference of A$ = 0" the subharmonic was suppressed. 
A strong subharmonic could be observed for a frequency pair of fsub = 150 Hz and 
ffun = 300 Hz (case X V )  at an initial phase difference of A$ = 0" (figure 14). In this 
case an initial phase difference of A$ = 90" leads to suppression of the subharmonic 
as it happened in cases ZZZ-V which were forced at higher frequencies of 184 and 
368 Hz. The maximum integrated energy of the subharmonic wave in this case was 
only 0.001 at x / D  = 0.8 in comparison to 0.0016 for case III (figure 5) .  Thus, there 
is a progressive deterioration by a factor of 3 in the maximum amplitude attained as 
the subharmonic frequency is reduced from 184 to 140 Hz at A$ = 0". This suggests 
that the resonant enhancement of the subharmonic is frequency dependent. Different 
frequency pairs also respond differently to the initial phase angle - leading to either 
amplification or suppression of the subharmonic wave train. The less pronounced 
gain of energy of the subharmonic for the frequency pair 14&280 Hz might be in 
part also due to the coarse step in A$ and the high levels of random turbulence 
existing farther downstream decreasing the interaction of the instability waves at the 
investigated low forcing level. 

4.5. Slightly non-matching resonance conditions 
Another feature of subharmonic resonance is the excitation of sidebands around the 
subharmonic frequency, when forcing with a detuned frequency a d e t  = o s u b  L- A a .  By 
superposing the detuned subharmonic and the fundamental waves in an amplitude 
modulated forcing signal, with a continuous change of A$, the resonance conditions 
predict the generation of a second sideband aout = afun - which is symmetrical 
about the subharmonic frequency (Monkewitz 1988). The demand for equal phase 
speed changes under detuned forcing to Cph,out = C p h f u n ( 1  f AO/Wsub), which can be 
reduced to Cph,out = C p h f u n  for a small detuning do. 
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The power spectrum shown in figure 15(a) was measured in a plane mixing 
layer at the downstream location where the energy of the subharmonic is at its 
maximum. It shows the generation of a second sideband = @fun + for 
( O d e t - O s u b ) / O S u b  = -10%. It does not indicate a strong dependence of the magnitude 
of the spectral peak of the sidebands on the detuned frequency investigated. The 
precise occurrence of an instability wave at the subharmonic frequency was not 
observed. Less energy is contained in the sidebands (figure 15b) than in the case when 
the forcing is precisely at the subharmonic frequency. It shows, however, only a weak 
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fundamental at x / D  = 0.6, y = 1.6 (case III) 

dependence on the detuning frequency Am. When one sideband is forced one may 
observe the emergence of a resonant sideband which is symmetric with respect to the 
subharmonic frequency, the energy is supplied to two instability waves instead of to 
the one resonant subharmonic. 

5. Resonance conditions and initial phase difference 
Michalke (1984) and Cohen & Wygnanski (1987b) showed theoretically that for 

subharmonic resonance to occur two conditions (i) Ui,fun = 0 and (ii) C p h f u n  = Cph,sub 

have to be satisfied. It was shown earlier that the initial phase difference between 
the two instability waves has to be considered as it may strongly influence the 
development of the subharmonic. The condition of equal phase speed is equivalent 
to the condition that 

where 4 is the phase of either wave. For resonance a constant phase difference 
between the two waves must be maintained in the non-dispersive region depending 
on the initial A$ between the two forced waves. Experiments showed that the initial 
location where (24sub - = const) depends on A 4  and consequently the resonance 
between the waves might be inhibited. In a divergent mixing layer the phase speed is 
not constant across the shear layer (e.g. Gaster et al. 1985) and thus the equality of 
phase speeds at one radial location might be misleading. In addition the phase varies 
across the mixing layer (figure 16). Fortunately, the phase angle of the fundamental 
is almost independent of r on the high-speed side of the flow. 

In order to determine the radial and streamwise locations of equal phase speed 
of the fundamental and the subharmonic, contour plots of the phase difference 
(2&b - 4fun) were used. The contours of the phase difference as well as the contours 
of the amplitudes of the subharmonic are displayed for case IZZ in figure 17 for 
A 4  = 0" and A+ = 90". Horizontal lines (i.e. parallel to the x-axis) in the phase 
diference contour plot (figure 17a,c) indicate regions where the phase velocities of 

2 4 s u b  - 4 f u n  = const 7 (5.1) 
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A 4  = 90". 

the two waves are identical thus allowing a subharmonic resonance. Vertical lines 
imply that no resonance is possible since the dispersiveness of the waves is largest. 
The distances between the contours in the amplitude contour plot (figure 17b,d) are 
inversely proportional to the spatial amplification rate. 

In the case of the amplified subharmonic (figure 17a, b) the strongest amplification 
takes place near the centre of the shear layer. The maxima of the amplitudes of 
the subharmonic wave occur on the high-speed side of the centreline, in agreement 
with the observations of Cohen & Wygnanski (1987a). The thick horizontal line in 
the phase contour plot (figure 17a) starting at ( r  - &5)/8 = -2 depicts the phase 
reversal occurring at this radial location over all the stations considered (approximate 
phase shift of n). Another phase reversal in the streamwise direction appears at 
x / D  = 0.65 between 2.5 > [(r - &.5)/8] > 0.5. The strongly amplified region of the 
subharmonic resides between those phase-reversal curves. The streamwise (vertical) 
phase reversal is accompanied by a rapid reduction in amplitude of the subharmonic. 
The strongest region of amplification occurs between -45" < (2&b - $fun) < 135", 
i.e. over the 180" of the subharmonic wave where the amplitude of the subharmonic 
is enhanced. Along with the maximum amplitude, the line of zero phase difference is 
inclined towards the inner side of the jet with increasing x, i.e. the two waves near 
the centre of the mixing layer maintain their favourable phase difference providing 
optimal phase locking. Furthermore, for all the initial phase differences examined, the 
two interacting waves switched to an initial phase difference of A+ = 0" at the radial 



Experimental investigation of subharmonic resonance in an axisymmetric jet 389 

-2.0 

~ -1.0 

L 

--- n 3 0  
W 

1 .o 

2.0 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(b) 

-2.0 

-1 .o 

0 

1 .o 

2.0 

0.3 0.4 0.5 0.6 0.7 0 8 0.9 

(d ) 

-2.0 

-1 .o 

0 

1 .o 

2.0 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3 0.4 0 5 0.6 0.7 0.8 0.9 

FIGURE 18. Contours of the phase difference (2&, - &fun): (a) tripped nozzle (case XZZZ), A 4  = 90" 
(amplified subharmonic), (b)  tripped nozzle (case X I Z I ) ,  A& = 0" (suppressed subharmonic), 
( c )  higher forcing level (case V I )  A& = o", ( d )  higher forcing level (case V I )  A& = 90". 

X I  D xlD 

location of highest amplitudes. Thus the radial location of the favourable interaction 
is significant. 

In the case with suppressed resonance ( A 4  = 900) phase locking between sub- 
harmonic and fundamental sets in much further downstream at x / D  = 0.6 (figure 
17c). The amplitude contour plot of the subharmonic wave (figure 17d) indicates 
no significant gain up to x/D = 0.6 but increasing amplitudes downstream of this 
point. The phase difference contour plots (figure 17c) show constant phase differences 
(24sub - (Pfun)  between the two waves starting from x / D  > 0.6 in the central core 
of the shear layer. This occurs after the streamwise phase reversals which are at 
x / D  m 0.53 on the high-speed side of the jet and at x / D  = 0.6 on the low-speed 
side of the flow. Thus the radial region in which the phase of the subharmonic is 
linked to the phase of the fundamental is limited to -1 < ( r  - &.5)/8 < 0.5. For 
this reason the interaction between the two waves is inhibited and no subharmonic 
enhancement could be achieved up to x/D = 0.6. Only in a small region around 
-0.5 < ( r  - &.5)/8 < +0.5 and x / D  > 0.6 are the waves non-dispersive and a small 
gain in the subharmonic amplitude can be observed. The absolute maximum of the 
subharmonic occurs farther downstream in comparison to the amplified case, due to 
the late interaction and the reduced growth rate of the shear layer. 

The cases of the tripped nozzle (case XZZZ) and the higher amplitude forcing (case 
V I )  are of special interest. Both cases have comparable strong growth rates of the 
subharmonic wave but at the higher forcing amplitudes the influence of A 4  vanished 
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for A# = 0" and 90" while for the tripped nozzle flow the effect of A$ reversed itself 
relative to the case for which transition occurred naturally requiring A$ = 90" for 
amplification and A# = 0" for suppression. In this case the contour plots showing the 
phase difference are similar regardless of the amplification rate of the subharmonic 
(figure 18a, b). However, in the initial region of a subharmonic interaction (i.e. around 
x / D  = 0.4), where the fundamental wave ends its amplification, differences in the 
phase contours are noted. The dotted line in these plots indicates the initial position 
from which the two waves become non-dispersive. The straight vertical solid line 
marks the position where the fundamental wave is neutral according to a linear 
theory. Here the growth rate can be considered as being small, even if the fundamental 
continues to amplify until it saturates nonlinearly. For the amplified subharmonic 
case (A$ = 90") both resonance conditions (stipulated in equations (3.3) and (3.4)) 
are satisfied (figure 18a), while in the suppressed subharmonic case (A$ = 00) the 
waves start to be non-dispersive approximately 0.05D farther downstream (figure 
18b). There is also an 'island' of phase reversal which extends from x / D  = 0.4 to 
x / D  = 0.55 around ( r  - & ) / B  = -1.5. This is roughly the radial location where the 
fundamental has its largest amplitude (figure 16). Thus, by changing its phase it may 
not fulfil its role as a catalyst in the subharmonic growth. 

The phase difference contour plots for the highly forced jet (case VZ) are more 
similar for A# = 0" (figure 18c) and A# = 90" (figure 18d) than the pair of contour 
plots generated for the tripped flow. Here the subharmonic is amplified irrespective 
of the initial phase difference investigated. The stronger forcing moves the location of 
the phase locking of the two waves further upstream irrespective of the imposed A#. 
This effect is perhaps responsible for the reduced influence of the initial phase angle. 
Furthermore there is hardly a region in which phase reversal occurs. No decrease in 
the wave-wave interaction in favour of the mean-flow-wave energy transfer has 
been observed so far (figure 26) in contradiction to the proposition by Mankbadi 
(1991) to explain the decreasing influence of the initial phase angle on the resonant 
interaction when the forcing level is increased. 

6. Energy transfer to the resonant waves 
6.1. Energy of the meanflow 

The experimental results obtained for different inflow conditions suggest that a 
major part of the energy of the subharmonic is supplied by the mean flow. Major 
differences in the subharmonic energy caused by changing the initial phase angles 
relative to the fundamental had only a marginal effect on the fundamental itself. The 
fundamental wave therefore only facilitates the energy transfer to the subharmonic. 
This observation seems to corroborate the predictions of Orszag & Patera (1983) who 
showed that in a boundary layer, a direct fundamental-subharmonic energy exchange 
can only compensate the viscous dissipation in the subharmonic wave. 

The Reynolds stress and the production of turbulence (or other oscillatory motion) 
is related to the mean momentum equation and to the mean kinetic energy equation. 
Therefore, an increase in the momentum thickness results in a depletion of mean 
energy of the flow. A rapidly amplifying subharmonic wave causes even further 
increase of the momentum thickness. This effect is demonstrated in figures 19(a) and 
19(b) for the natural (case III) and for the tripped flow (case X I I I )  respectively. The 
rapidly amplifying subharmonic leads to an increase in the momentum thickness in 
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the direction of streaming from x / D  = 0.56 in the natural case (figure 19a) and from 
x / D  = 0.50 in the tripped case (figure 19b). 

6.2. Kinetic energy 
The energy transfer to the subharmonic can be divided into a linear mechanism, 
described by a linear stability model, and an interaction, which can be further 
subdivided into a resonant interaction and into other nonlinear mechanisms. The fact 
that the fundamental, phase-locked fluctuations are not altered by the rapidly growing 
resonant subharmonic fluctuations, can be attributed to a 'parametric' energy transfer 
mechanism. In a case of 'parametric' resonance, the growth of the subharmonic 
wave is decoupled from the fundamental (Kelly 1967) and most of the energy is 
supplied by the mean flow. The mean flow is assumed to be an infinite source of 
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kinetic energy as long as it remains parallel. In a typical nonlinear interaction on 
the other hand, an energy transfer takes place, between any two waves after they 
attain a finite amplitude. In order to define the mode of energy transfer the kinetic 
energy contained in the mean flow, the coherent primary motion (assumed to be the 
phase-locked subharmonic, fundamental and harmonic wave), and in the incoherent 
turbulence was calculated for the three major cases 111, VI  and XI11 as listed in 
table 1. For each case, a comparison is made between an amplified and a suppressed 
subharmonic, whenever a suppression was found. 

The kinetic energy contained in the incompressible mean flow at any x-location 
may be defined as 

ro. I 

E,,,, = U r dr ,  (6.1) Lo -3 

where ro.1 refers to the position at the outer edge of the mixing layer where 
The kinetic energy of each wave is then 

= 0.lVjet. 

while the kinetic energy of the incoherent turbulence is 

The total fluctuating component, which is usually measured, consists of random 
turbulence as well as of the coherent motion, which in an externally excited flow is 
locked in phase with the excitation signal, i.e. 

n 

Since only the streamwise component of the velocity fluctuations was measured in the 
present experiment, we shall try to use the available information to assess the energy 
gained or lost by each component and thus to obtain a detailed energy balance. 

The respective energy exchange among the mean, the coherent and the turbulent 
motion was assessed by integrating the kinetic energy over a certain part in the 
streamwise direction. The principle is demonstrated in figures 20 and 21 by marking 
the areas of the flow from which these integrals were obtained by hatched lines. 

The results are summarized in table 3. The following cases were considered: 
(i) Case XI11 (tripped flow), A+ = 0" and A 4  = 90". Kinetic energy integrated 

between 0.45 < x/D d 0.6, figure 20. 
(ii) Case 111, A 4  = 0" and A 4  = 90". Kinetic energy integrated between 0.54 < 

x/D < 0.725 and 0.775 d x/D < 0.9, figure 21. 
(iii) Case V1 (high forcing), A 4  = 0" and A 4  = 90". Kinetic energy integrated 

between 0.5 < x/D < 0.66. 
The magnitude of the streamwise integrated kinetic energy terms (table 3) for the 

amplified and the suppressed cases confirms the supposition that most of the energy 
gained by the subharmonic is supplied by the mean flow. 

For the tripped nozzle flow excited simultaneously by two waves (case XIII, 
figure 20) at an initial A$ = 0", the increase in subharmonic energy was similar 
to that in the jet forced only at the subharmonic frequency. Comparison of the 
integrated kinetic energy between the suppressed and the amplified cases for the 
subharmonic, i.e. A 4  = 0" and A 4  = 90", shows a gain of the amplified subharmonic 
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of AEsub = s Esub,9p - s Esub,Oo = 0.50 and a loss in the amplitude of the fundamental 
of AE,,, = -0.03. The fundamental seems therefore to contribute only 6% of the 
gain of the subharmonic in the region investigated. Most of the additional kinetic 
energy gain stems from the mean motion AE,,,, = -2.1. 
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FIGURE 21. Evolution of the kinetic energy integrals with x / D ,  fsub = 184 Hz, 
ffun = 368 Hz (case 111). 

In the non-tripped flow (case ZZZ) the differences between the amplified and the 
suppressed subharmonic energy are larger than in the tripped nozzle flow. When 
A$ = 90" (the suppressed case) the subharmonic energy does not exceed the level 
achieved with single periodic forcing at the subharmonic frequency up to x / D  = 0.775. 
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Case 

X I I I  
0.45 < x / D  < 0.6 

Ad = 90" 
A # = 0 "  

J E90° - J EOO 

I l l  
0.54 < x / D  < 0.725 

A# = 0" 
A@ = 90" s EOo - s E90° 

I l l  
0.775 6 x / D  < 0.9 

AC$=0" 
A# = 90" 

J E9O0 - J E o ~  

VI  
0.5 < x / D  < 0.66 

A(b=0" 
A# = 90" 
EOo - s E90° 

-3.73 0.07 0.23 -0.02 0.16 
-5.83 0.57 0.20 -0.02 0.15 
-2.10 0.50 -0.03 0.00 -0.01 

-7.00 1.41 0.19 -0.02 0.24 
-1.70 0.23 0.22 -0.00 0.27 
-5.30 1.18 -0.03 -0.02 -0.03 

-3.30 0.24 -0.19 -0.00 0.23 
-5.62 1.11 -0.26 -0.00 0.45 
-2.32 0.87 -0.07 -0.00 0.22 

-5.99 0.72 0.37 -0.01 0.07 
-5.55 0.57 0.37 -0.01 0.06 
0.44 0.15 0.00 0.00 0.01 

TABLE 3. Comparison of the streamwise integrals of kinetic energy for three major cases. 

The estimated energy exchange from the fundamental to the subharmonic in the range 
0.54 < x / D  < 0.725 accounts for only a possible 3% contribution to the amplification 
of the subharmonic. 

Beginning at a streamwise position of x / D  = 0.825, the subharmonic wave gains 
energy up to x / D  = 1.0. The subharmonic wave in the initially amplified case with 
A 4  = 0" gains little in this region when compared with the subharmonic gain for 
the suppressed case of A 4  = 90". Even in this region the possible contribution 
of the fundamental to the subharmonic amounts to only 9% of the subharmonic 
growth. The loss in the fundamental may be balanced in part by the gain in random 
turbulence energy. 

For higher amplitude of forcing (case V I )  no significant differences of the integrated 
kinetic energy were observed for A 4  = 0" and A 4  = 90". The energy gained or lost 
by the streamwise turbulence component and by the same component of the coherent 
waves is never fully balanced by the energy lost by the mean motion; the latter is 
always larger. The above balance neither takes lateral velocity fluctuations nor the 
dissipative terms into account. It is, therefore, only a rough estimate which confirms 
that most of the energy gained by the resonant subharmonic is supplied by the mean 
flow. 

6.3. The interaction between the meanJlow and the coherent motion 
The kinetic energy equations describing a turbulent flow with coherent motion can 
be obtained by applying a triple decomposition (Hussain & Reynolds 1970) of the 
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Navier-Stokes and continuity equations and using successively phase- and time- 
averaging. The resulting equations can be simplified by making the boundary-layer- 
type approximations (Hinze 1975) to the mean quantities. The diffusion terms vanish 
upon integration across the flow and the energy equation for the mean motion 
becomes 

The direct viscous dissipation of the mean kinetic energy to thermal energy is very 
small owing to the small strain rates of the mean flow and is neglected. Equation (6.4) 
suggests that the mean flow loses kinetic energy to the coherent and to the turbulent 
motion by the work of the Reynolds stresses against the mean shear. 

change in the energy of turbulence with x is 
The integral kinetic energy equation for the random turbulence representing the 

' 1 J f U n  

_ _ _  
The first term on the right-hand side of equation (6.5), Jr:b -u'v'(dU/ar)r dr, appears 
as a source term representing the production of turbulent energy by the mean flow 
while it appears with an opposite sign (i.e. as a loss) in the mean energy equation. The 
second and the third terms are the energy contribution of turbulence to the coherent 
motion containing mostly the subharmonic and the fundamental waves. The last term 
@' represents the viscous dissipation of random turbulence. 

Since only single-wire probes could be calibrated in the facility the radial compo- 
nents were calculated from the decomposed, densely acquired streamwise data using 
continuity condition (2.3). In order to obtain well-behaved derivatives from the mean 
velocities the data were interpolated by using the Akima-interpolation (Akima 1970) 
and the resulting derivatives were smoothed in Fourier space. The total Reynolds 
stress was then calculated from the mean-momentum equation. The coherent data, 
having only little scatter, provided reasonably smooth derivatives so that only slight 
additional smoothing was necessary. Having both ii and 5 data over the complete 
forcing cycle enabled us to calculate the coherent Reynolds stresses by multiplying 
each value of the phase coherent ii- and 5-records and time-averaging of the products. 

Fourier decomposition of the phase-coherent data gives the complex eigenmode 
shape 6 and 6. The wave Reynolds stress is then 

(6.6) 

where '*' denotes a complex conjugate and Re means 'real part of'. 
The production terms of the turbulent energy, the total coherent energy (consisting 

here of all the coherent components in the flow) and the streamwise rate of the change 
of the energy of the mean motion are displayed in figures 22 to 24. They indicate 
that the turbulence production by the mean flow is strongly affected by the ampZiJied 

- 
i i B l f  = iRe(66') = iRe(Q'B), 
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FIGURE 22. Variation of the production terms with x / D ,  fsub = 184Hz, f f u n  = 368Hz (case 111). 

subharmonic wave. Positive production represents a gain of the flow component while 
negative production represents its loss. 

For case I I I  (shown in figure 22) the coherent productions of the suppressed 
subharmonic and amplified subharmonic are equal up to x / D  = 0.44. The subsequent 
increase in the coherent production is attributed to the fast growing fundamental 
which draws energy from the mean flow on account of the turbulence provided 
that x / D  < 0.5 (e.g. see x / D  = 0.44). The production terms are linked to the 
growth rate of the jet. As both coherent and turbulent production determine this 
growth and their sum is higher than in the unforced case, the momentum thickness 
increases more rapidly than in the unforced case (figure 19). From x / D  > 0.44 the 
coherent production in the case of the amplified subharmonic is larger than the 
coherent production of the suppressed subharmonic, because of the amplification of 
the subharmonic wave in the former case. 

The coherent production in the case of the suppressed subharmonic becomes 
negative at x / D  w 0.6 which corresponds approximately to the position at which the 
fundamental is neutrally stable according to linear theory. However, some growth of 
the fundamental is maintained up to x / D  = 0.75 as is obvious from the evolution 
of the kinetic energy integrals (figure 21). Beyond x / D  = 0.6 the subharmonic 
generated at A 4  = 0" is growing fast by diverting energy normally available for 
the production of random turbulence itself. As a consequence the mean energy 
and the turbulence production decrease with x .  The total coherent production 
increases and becomes equivalent to the turbulent production at x / D  NN 0.75. From 
x / D  > 0.88 the production of the highly amplified subharmonic ceases and part of 
its energy is converted to random motion. Consequently the random Reynolds stress 
increases and with it the turbulence production, becoming similar in magnitude to 
the turbulence production of the unforced case at x / D  NN 1.2. In the case of the 
suppressed subharmonic (i.e. A 4  = 90") the coherent production becomes positive 
around x / D  w 0.8 which results in a slight growth of the subharmonic (figure 21). 

A cross-check of the calculated Reynolds stresses can be obtained by comparing the 
total production of the fluctuating motion by the mean motion with the streamwise 



398 C .  0. Paschereit, I .  Wygnanski and H .  E .  Fiedler 

0.005 
G 
0 .- 
w 

Y a 
g o  
1 .- 

2 
M 

-0.005 
z" 

0 0.2 0.4 0.6 0.8 1 .o 1.2 
XI D 

FIGURE 23. Variation of the production terms with x / D ,  fsub = 184Hz, ffun = 368Hz, 
tripwire (case X I I Z ) .  

depletion in the kinetic energy of the mean flow. Following equation (6.4), the 
term i(d/dx) Jzb u3r dr must be balanced by the sum of turbulent and coherent 
production. The derivative of the kinetic energy integral is displayed in figure 22 
as a loss term, representing a loss of mean energy to the turbulent and coherent 
motions by the action of the Reynolds stresses against the mean shear au/ar. The 
calculated Jrzh i@(au/ar)r  dr and the Jrz; D3rdr contain cumulative errors introduced 
by estimating derivatives from measured quantities. Still, the terms calculated for the 
unforced flow agree fairly well: the gain of the turbulent field displayed by the 
production term is balanced by the loss of energy of the mean flow. The agreement 
was less good when the jet was subjected to the bimodal forcing. The minima of the 
loss of kinetic energy by the mean motion which are related to the maxima in the 
gain by the turbulent and the coherent motions do not occur at the same streamwise 
position but they are shifted upstream by 1/4. 

The production terms for the case of the tripped nozzle flow are displayed in figure 
23. There the subharmonic was amplified at A# = 90". The coherent production is 
always smaller when compared to the case without the trip ring while the turbulent 
production is larger. In the case of the 'suppressed subharmonic' the coherent 
production is negative from x/D > 0.5 suggesting that energy is supplied by the 
coherent fundamental (being the most prominent term at x / D  w 0.5) back to the 
mean flow. However, the kinetic energy integral of the fundamental (figure 20) shows 
a slight increase with x in the region 0.5 2 x / D  2 0.6. A similar behaviour was 
also observed for the non-tripped case (III) and will be discussed in the following 
section. The subharmonic level in this case never exceeded the level achieved when 
the subharmonic alone was forced and thus the total coherent production cannot 
indicate an actual gain in the coherent components at x / D  > 0.5. 

When examining the high forcing case (case V I ) ,  we found the evolution of the 
subharmonic to be insensitive to the initial phase difference and the same was true 
for the production terms. For the phase differences A# = 0" and A# = 90" the 
production terms are identical (figure 24). 
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FIGURE 24. Variation of the production terms with x / D ,  fsub = 184Hz, frun = 368Hz, 
high forcing level (case V I ) .  

6.4. Wave-wave interaction terms 
As it was not possible in the present experiment to measure the interactions among 
the waves directly, further insight was gained by comparing the coherent wave 
production by the mean flow. This comparison encompassed only the subharmonic 
and the fundamental waves. The streamwise changes in the energy of each of the 
coherent waves considered can be described in the same manner as in equations (6.4) 
and (6.5). 

The integrated energy balance for the fundamental is then 

and the energy equation for the subharmonic is 

r,,,S"b 

The fundamental gains energy from the mean flow (first term on the right-hand 
side of equation (6.7)) and loses energy to the subharmonic (second term) and to 
random turbulence (third term). The subharmonic gains energy from the mean flow 
(first term on the right-hand side of (6.8)) and from the fundamental (second term) 
while losing energy to the turbulent field (third term). The subharmonic loses energy 
also to other waves, particularly to its own subharmonic (i.e. a frequency which is two 
octaves lower than the fundamental). Owing to the lack of data for the other velocity 
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FIGURE 25. The Reynolds stress of the subharmonic in the tripped case (case X I I I )  at three 
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components (i.e. B and 6) only an approximate energy balance could be constructed 
by considering the streamwise component measured, the lateral component v" which 
was calculated from the continuity equation (2.3) and the uv correlations. 

The Reynolds stresses associated with the coherent wave were calculated from 
equation (6.6). The distribution of the Reynolds stress of the subharmonic wave is 
displayed in figure 25 for three typical downstream locations. The linear stability 
theory predicts that the Reynolds stresses reverse their sign when the local Strouhal 
number Ste changes from a value smaller than critical (here critical means one in 
which the fundamental becomes neutral) (figure 25a) to a Strouhal number larger 
than critical (figure 25c). The S-shaped distribution, occurring for Stlocal = Stcrirical 
(figure 25b), can also be obtained by adding a small nonlinearity to the linear approach 
(Cohen 1986). The negative Reynolds stresses" may be associated with the inclination 
of the large eddies, as proposed by Fiedler et al. (1980) and by Browand (1980). 

The production terms of each wave were calculated from the total coherent 
Reynolds stress. They are presented in figure 26(a-cJ and they represent the left-hand 
term of equations (6.7) and (6.8): (i(d/dx) Jrzt,v(iiz + 3 ) r  dr). Three different cases 
are considered, all of them forced at the frequency pair fsub = 184 Hz and ffun = 368 
Hz. Figure 26(a) displays the case where the initial amplitude ratio of fundamental 
and subharmonic was y = 1.6 and the flow in the nozzle was not tripped (case ZZZ). 
In figure 26(b) the flow was tripped for the same initial amplitude ratio of y = 1.6 

f Zaman & Hussain (1980) related negative Reynolds stresses to regions of vortex pairing. 
However, Oster & Wygnanski's (1982) results indicate vortex pairing to be inhibited for negative 
Reynolds stresses. 
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FIGURE 26. Variation of the production terms with x / D ,  fsub = 184Hz, ffun = 368Hz: (a) case III, 
(b)  tripwire, case X I I I ,  (c )  high forcing level, case V I .  

and finally the case where the overall forcing level was doubled (case V I )  is plotted 
in figure 26(c). 

The wave production of the fundamental in all three figures is mostly negative 
at x / D  > 0.5. This is associated with the negative wave Reynolds stresses of the 
fundamental wave. The occurrence of negative production terms due to negative total 
Reynolds stresses as observed by Oster & Wygnanski (1982) was not observed in 
the present experiment. The total Reynolds stress can only be negative in a zero or 
negative growth region of the shear layer which did not occur for the investigated, 
low forcing levels. 

In the initial region of the jet (i.e. at x/D < 0.5) the production of the fundamental 
is dominant and therefore the fundamental grows. For the untripped case the 
fundamental production reaches its maximum at x / D  m 0.5 (figure 26a). This 
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is associated with the maximum growth of the fundamental kinetic energy integral 
(figure 21). From x/D rn 0.58 the production of the fundamental is negative, indicating 
energy transfer from the fundamental back to the mean flow. At this streamwise 
position the fundamental is neutral based on linear stability theory. However, the 
kinetic energy integral for the fundamental (figure 21) is still slightly growing at this 
position as is indicated by the positive value of the term i(d/dx) Jrzb g($ + 9 ) r  dr 
plotted in figure 26(a). For both cases, A 4  = 0" and A 4  = 90", the production 
of the fundamental by the mean motion is almost identical up to x/D = 0.8. The 
slightly reduced decay of the fundamental in the case of A 4  = 0" is due to the 
decreasing subharmonic which supplies energy back to the mean flow (figure 20). 
The production terms of the subharmonic show major differences depending on the 
initial phase angle. The production of the subharmonic in the suppressed case starts 
farther downstream at x/D > 0.72 and reaches a lower peak value at x/D = 0.8. 
The change in the derivative of the kinetic energy integral is associated with the 
production of the subharmonic by the mean flow. Both the derivative of the kinetic 
energy integral and the production of the subharmonic show identical behaviour in 
the case of the resonant amplified subharmonic. Both terms reach the same maximum 
value indicating again that most of the energy for the subharmonic is supplied by the 
mean flow. 

An estimate of the energy supplied by the fundamental directly to the subharmonic 
as described by the term Jrzb ( -E f i ) , ,~ (dO~, , /~r ) r  dr can be obtained by the differ- 
ence between the derivative of the kinetic energy and the coherent production of 
subharmonic by the mean flow. This difference 

for the resonant amplified subharmonic (i.e. A 4  = 0") is also plotted in figure 26 in 
the separate window and marked by a solid line. This estimate is smaller than the real 
fundamental-subharmonic energy transfer, because the subharmonic loses energy to 
random turbulence. However, this term was shown to be small, particularly in the 
growth region of the subharmonic (figure 22), which again corroborates the notion 
that the direct energy transfer from the fundamental to the subharmonic wave is very 
small indeed. 

The case of the tripped nozzle flow (figure 26b) shows the same features as described 
above. The interaction between the instability waves, however, is moved upstream as 
a consequence of the increase in the rate of spread of the mean flow. The maximum 
production of the amplified subharmonic occurring at A 4  = 90" is approximately 30% 
less than for the non-tripped flow (case I I I )  while the production of the subharmonic 
in the suppressed case is negligible throughout. 

When the forcing level was doubled (figure 26c) no influence of the initial phase 
difference was found. The stronger forcing immediately led to a phase locking between 
the two waves irrespective of the initial A4.  The production terms as well as the 
derivatives of the kinetic energy integrals are identical for both A 4  considered in case 
V I .  

6.5. Random turbulence 
External excitation can suppress or enhance random turbulence, depa-nding on the 
frequency of forcing. The streamwise development of the maximum in ut2 = (u - (u))~ 
is shown in figure 27 for various cases corresponding to y = 1.6 in the absence of 
the trip wire. Note that only the random turbulence component of fluctuating axial 
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single-frequency forcing corresponding to the 'subharmonic' frequency of f = 184 
Hz ( S t ~ , ~ ~ b  = 1.2) relative to the unforced flow (figure 27). Conversely, when the jet 
was forced at the fundamental frequency o f f  = 368 Hz ( S t D f u n  = 2.3) the random 
turbulence is suppressed from x / D  = 0.48. This is in accordance with the observations 
of Zaman & Hussain (1981) and the theoretical investigation of Mankbadi (1985) 
who have shown that turbulence suppression occurs for higher Strouhal numbers 
1.2 < S ~ D  < 2.4, where StD = f D / v .  Bimodal forcing of the jet at 184 Hz and 368 
Hz with an initial amplitude ratio of y = 1.6 also shows suppression of random 
turbulence, which in the case of the resonant amplified subharmonic ( A 4  = 0" for 
case I I I )  is most pronounced. 

The calculated incoherent production by the mean motion for the forced and 
the unforced flow is almost identical for both cases around x / D  = 0.48 where 
the drop in the turbulent fluctuations occurs. As the fundamental continues to 
grow downstream of this x-position (as may be deduced from the development of 
the term i(d/dx) L2b D($ + $)lfunr dr), although the coherent production of the 
fundamental by the mean motion becomes negative and it detracts from the growth 
of the fundamental, energy may be transferred directly from the turbulent field to 
the fundamental as described by the term rjun = -(uu) + u". However, as no phase- 
locked data for the turbulent Reynolds stresses were available, the coherent-turbulent 
energy transfer by the action of rfun can not be verified. One may conclude, from 
the available data, that the strong drop in turbulence is mostly associated with the 
fundamental wave. Single-frequency forcing at the subharmonic frequency and the 
presence of an amplified subharmonic in the bimodal forcing cases had only a minor 
effect on the background turbulence. 

From x / D  > 0.7 the fundamental is decaying partly by losing its energy to random 
turbulence through the coherentttrandom interaction. Thus the turbulence intensities 
can continue to grow while the turbulent production by the mean is decreased 
(figure 22). The effect of random turbulence suppression as a result of excitation is 
even more pronounced when the jet is forced at higher amplitudes or when the flow is 
tripped (figure 28). For the tripped nozzle flow the randomttcoherent energy transfer 
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FIGURE 28. Maximum amplitude of random turbulence along x / D  for the tripped nozzle 

to the subharmonic occurs at x / D  = 0.9 because of the term rsub = -(uu) + u". 
The turbulence production is positive but the turbulence intensities saturate. The 
subharmonic wave starts to grow again at this downstream position while the coherent 
production becomes negative. This suggests that energy is being transferred from the 
turbulent field to the subharmonic. At x / D  = 1.1 the subharmonic decays and thus 
the transfer is reversed to the turbulent flow. 

Conversely, data taken at lower Strouhal numbers S t D , s u b  = 0.89 and S t D f u n  = 1.8 
(case X I V )  show local enhancement of the jet turbulence when compared to the 
unexcited case (figure 27) owing to the coherent-random turbulence interaction terms 
rsub and rfun (equation (6.5)). 

Data taken at Strouhal numbers St l ) , sub  = 0.95 and StD,fun  = 1.9 (case X V )  with 
a resonant subharmonic can show either increased random turbulence or suppressed 
random turbulence (figure 27). The fundamental component leads to an enhancement 
of turbulence up to x / D  = 0.6 while it loses energy through the term rfun. The 
subharmonic is strongly growing from x / D  > 0.6 (see figure 14) and drains energy 
from the mean flow. As a result there is less mean energy available for turbulence 
production. The subharmonic starts to decay from x / D  w 0.85 and energy is 
transferred to random turbulence. The above comments about the coherent and 
random fluctuations are based on the definitions presented in equation (2.1). Phase- 
locked data tend to reduce the intensity of the coherent motion because they do not 
account for phase jitter. Thus although the present discussion is statistically valid it 
may be overemphasizing the significance of the random motion. 

7. Concluding remarks 
Kelly's (1967) idea of subharmonic resonance was applied and tested in the mix- 

ing layer of an axisymmetric jet. The conditions for the resonance were verified 
experimentally and found to be valid (i.e. the fundamental and the subharmonic are 
non-dispersive while the linear amplification rate of the fundamental was vanishingly 
small). The present investigation also demonstrated the importance of the initial 
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phase difference A$ between the two externally excited waves on the resonance. It 
was shown that absolute forcing levels, initial amplitude ratios y, forcing frequencies, 
and the characteristic width of the mixing layer (i.e. the initial momentum thickness 
which can be altered by using a trip ring or a different nozzle), affect the amplitude 
gain of the subharmonic wave. 

At certain initial phase differences A$ a suppression of the resonant growth of the 
subharmonic could be observed in spite of the change in the local width of the shear 
layer which was increased by the trip ring. The intensity of the incoherent motion 
(i.e. background turbulence) has no significant effect on the growth of the coherent 
components of the motion. An increase in the forcing level reduces the influence of 
the initial phase difference on the amplification of the subharmonic. Contour plots of 
the phase difference (2&b - $fun), used to describe the degree of non-dispersiveness 
between the subharmonic and the fundamental, indicate that at higher forcing levels 
the location at which the two waves became non-dispersive was moved upstream and 
became independent of the initial phase angle. 

Estimates of the energy transfer between the mean motion and the instability 
waves show that most of the energy gained by the subharmonic is supplied by the 
mean flow directly. The sensitivity of the amplification of the subharmonic to the 
location at which the two forced waves become non-dispersive is surprising in view 
of the fact that the energy for the growth of this wave comes from the mean motion. 
It is also noted that the subharmonic wave generated by the resonance alters the 
streamwise development of the mean flow by decreasing its overall kinetic energy and 
increasing the momentum thickness. Theoretical models neglecting this interaction 
(Kelly 1967; Cohen & Wygnanski 1987; Monkewitz 1988) by assuming the flow 
to be parallel miss an important feature of the subharmonic resonance mechanism. 
Hence one of the purposes of the present experiment was to stimulate more accurate 
theoretical predictions. The nonlinear energy integral technique used by Mankbadi 
& Liu (1981) describes at best some changes in the mean flow and the influence of 
the subharmonic on the fundamental. Their model predicts that an increase in the 
forcing level reduces the influence of the initial phase difference on the growth of the 
subharmonic. However, Mankbadi (1991) relates this phenomenon to a decrease in 
the wave-wave interaction and an increase in the importance of the mean-flow-wave 
energy transfer. This was not observed in the present experiment. The maximum 
normalized energy drained from the mean flow at the higher forcing level was 0.0026 
at x / D  = 0.75 while at a lower forcing level (showing an influence of the initial 
phase difference) the normalized energy drained was actually 0.0028 and occurred at 
x / D  = 0.775 (see figure 26). This indicates that no increase of the mean-flowt+wave 
interaction is necessary at higher forcing levels. 

An important difference between the present work and other similar experiments is 
in the very low forcing level used here. The amplitude of the phase-locked fundamental 
never exceeded 0.02% on the centreline at x / D  = 0.25, while it was around 1.4% in 
the experiment of Bradly & Ng (1989) and 2% in the experiment of Arbey & Ffwocs 
Williams (1984). Since there is more than one way in which a resonance may be 
realized, the correct mechanism involved is not easily uncovered. Third-order effects 
may be of importance and perhaps may even dominate the flow, if one of the waves 
exceeds a certain threshold level. 

Artificial excitation of the flow by two frequencies separated by one octave may 
have many practical applications because it offers a tool to control the turbulence 
structure and the spreading rate of a mixing layer beyond the possibilities associated 
with single-frequency excitation. Thus the flow can be controlled by changing the 
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with single-frequency excitation. Thus the flow can be controlled by changing the 
excitation frequency, the overall forcing level, the relative phase angle and forcing 
ratio between the two wave trains. The amplification rate of the subharmonic and 
the maximum amplitude of the subharmonic attained (which affects the spread of the 
mixing layer) is controlled by the initial phase angle between the two input waves. 
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